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Small RNA-sequencing (RNA-Seq) is being increasingly used for profiling of circulating microRNAs
(miRNAs), a new group of promising biomarkers. Unfortunately, small RNA-Seq protocols are prone to
biases limiting quantification accuracy, which motivated development of several novel methods. Here,
we present comparison of all small RNA-Seq library preparation approaches that are commercially
available for quantification of miRNAs in biofluids. Using synthetic and human plasma samples, we
compared performance of traditional two-adaptor ligation protocols (Lexogen, Norgen), as well as
methods using randomized adaptors (NEXTflex), polyadenylation (SMARTer), circularization (RealSeq),
capture probes (EdgeSeq), or unique molecular identifiers (QIAseq). There was no single protocol
outperforming others across all metrics. Limited overlap of measured miRNA profiles was documented
between methods largely owing to protocol-specific biases. Methods designed to minimize bias largely
differ in their performance, and contributing factors were identified. Usage of unique molecular
identifiers has rather negligible effect and, if designed incorrectly, can even introduce spurious results.
Together, these results identify strengths and weaknesses of all current methods and provide guidelines
for applications of small RNA-Seq in biomarker research. (J Mol Diagn 2022, 24: 386e394; https://
doi.org/10.1016/j.jmoldx.2021.12.006)
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Circulating microRNAs (miRNAs) found in various body
fluids are attractive candidates for clinical biomarkers.1 To
identify disease-specific miRNAs, small RNA-sequencing
(RNA-Seq) has become a method of choice for its high
screening capacity, specificity, sensitivity, and ability to
quantify isomiRs or detect novel miRNAs.2,3 Despite many
advantages, small RNA-Seq protocols suffer from several
limitations that obscure quantification. The classic protocol
for small RNA library preparation employs two sequential
ligations of adaptors to the 30 and 50 ends of the miRNAs (in
this study, represented by Norgen, Lexogen, and QIAseq;
protocol versions and companies are listed in Supplemental
Table S1). However, serious quantification bias is intro-
duced in this process due to unequal ligation efficiencies,
Pathology and American Society for Investiga
leading to systematic over- and underestimation of true
miRNA.4 The effect is particularly pronounced in biofluids,
where miRNA concentration and complexity are rather
low.5 Recently, three alternative approaches have been
developed to improve quantification accuracy. The first
approach uses adaptors with randomized nucleotides
increasing the chance of effective ligation (NEXTflex)6; the
tive Pathology. Published by Elsevier Inc. All rights reserved.
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second approach is ligation-free and employs poly-
adenylation and template switching during reverse tran-
scription (SMARTer), whereas the third approach relies on
ligation of a single 30 adaptor and subsequent circularization
(RealSeq).7 Additional quantification bias may arise during
PCR amplification of libraries. To mitigate PCR bias,
unique molecular identifiers (UMIs) have been introduced to
identify and remove PCR duplicates (employed in QIAseq
protocol), but their effectiveness in small RNA-Seq appli-
cations is debated.8,9 In addition, EdgeSeq, a platform using
hybridization probes and targeted sequencing readout, spe-
cifically designed for ease-of-use in clinical setting, is
available as an alternative to small RNA-Seq. Previous
comparative studies performed on a subsets of available
methods revealed vast differences in their perform-
ance.7,9e16 However, how current commercial small RNA-
Seq methods perform, particularly in a challenging setting
such as liquid biopsy samples, is not yet established. Here,
we present evaluation of seven commercial small RNA-Seq
methods representing all currently available technical ap-
proaches for library preparation, with focus on their per-
formance for miRNA quantification in human plasma.

Materials and Methods

Ethics Approval and Consent to Participate

Informed consent was obtained from all volunteers partici-
pating in the study. All procedures involving the use of
human samples were performed in accordance with the
ethical standards of the Institute of Biotechnology of the
Czech Academy of Sciences, and with the Declaration of
Helsinki.

Samples and RNA Isolation

Blood samples were collected from three healthy volun-
teers into K2EDTA BD Vacutainer tubes (Becton Dick-
inson, Franklin Lakes, NJ) and centrifuged within 30
minutes from collection at 1500 � g for 15 minutes at
room temperature. Plasma fraction was aspirated and
transferred into 2-mL tubes (Eppendorf, Hamburg, Ger-
many) and centrifuged again for 15 minutes at 3000 � g.
The supernatant was transferred into new 2-mL tubes and
stored at �80�C until analysis. Levels of hemolysis were
assessed in each sample by measuring absorbance at 414
nm using a NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA). Total RNA was isolated
starting from 7 to 9 plasma aliquots (250 mL) per sample
(24 aliquots in total) using miRNeasy Serum/Plasma
Advanced Kit (Qiagen, Venlo, the Netherlands) according
to the manufacturer’s instructions and eluted into 20 mL of
nuclease-free water. At the lysis step, 1 mL of isolation
spike-in mix and 1 mL of GlycoBlue Coprecipitant (Invi-
trogen, Carlsbad, CA) were added as described in
Androvic et al.17 Each RNA eluate was assessed for
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quality of isolation, levels of hemolysis, and presence of
inhibitors by two-tailed quantitative real-time RT-PCR
(RT-qPCR) panel (Supplemental Table S2), as described
in Androvic et al.17 All 24 RNA eluates were then pooled
together to produce a standard plasma RNA sample used
in the study. An equimolar mixture of 962 synthetic
miRNAs (miRXplore Universal Reference) was purchased
from Miltenyi Biotec (Bergisch Gladbach, Germany).

Library Preparation

Libraries were prepared in technical duplicates starting from
5 mL of plasma RNA pool and 5 mL of miRXplore Uni-
versal Reference (2 � 106 copies/mL) according to each
manufacturer’s protocol. The version of the protocol,
adaptor concentrations, and number of PCR cycles for each
protocol are listed in Supplemental Table S1. Libraries were
quantified on the Qubit 3 fluorometer (Thermo Fisher Sci-
entific) and Fragment Analyzer (Agilent, Santa Clara, CA).
Libraries generated by the same protocol were pooled and
separated on 5% TBE polyacrylamide gel electrophoresis on
Mini-PROTEAN Tetra Cell (Bio-Rad Laboratories, Hercu-
les, CA) (Supplemental Figure S1). A region representing
RNA fragments of length 140 to 160 nt (ie, fragments of 22
nt � approximately 10 nt miRNAs with adaptors) was
excised from the gel, then DNA was eluted into nuclease-
free water and purified with SPRIselect reagent (Beckman
Coulter, Brea, CA). All libraries were sequenced in one
sequencing run on NextSeq 500 high-output (Illumina, San
Diego, CA) with 85-bp single-end reads. A total of 5.8 to
17.9 million reads per library were obtained, with a median
of 11 million reads. EdgeSeq libraries were prepared ac-
cording to the manufacturer’s protocol and sequenced in the
TATAA Biocenter (Gothenburg, Sweden).

RT-qPCR

Absolute quantification was performed for 35 pre-selected
miRNAs using two-tailed RT-qPCR as described in
Androvic et al.18 For each miRNA, the standard curves were
generated using miRXplore as the standard to calculate the
absolute miRNA concentration in plasma. Both types of
samples were identical to the ones used for small RNA-Seq.
Briefly, 4 mL of the standard sample (miRXplore) in eight
different concentrations (5 to 5 � 107 copies/mL) and 4 mL
of plasma sample in two technical replicates were reverse
transcribed using a qScript flex cDNA kit (Quantabio,
Beverly, MA) in a 20-mL reaction containing a pool of
miRNA-specific primers. After cDNA synthesis, the total
volume of each cDNA sample was diluted to 200 mL, and 2
mL of the diluted cDNA were used as a template in a 10-mL
qPCR reaction containing 1� SYBR Grandmaster Mix
(TATAA Biocenter) and 0.4 mmol/L forward and reverse
primer. qPCR was performed in two technical replicates for
each diluted cDNA sample. The data were processed in
Biorad CFX Manager software version 3.1 (Hercules, CA).
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Cq values generated by reactions with aberrant melting
curves were discarded. After quality control, only 19 miR-
NAs passing high confidence criteria were used for corre-
lation analysis with RNA-Seq data.

Availability of Data and Materials

The datasets generated and analyzed during the current
study are available in the Gene Expression Omnibus data-
base (https://www.ncbi.nlm.nih.gov/geo; accession number
GSE149513). Scripts used for processing data are
available on github repository (https://github.com/
besarka16/Benchmarking-of-small-RNA-seq, last accessed
August 21, 2021).

Data Processing

Raw reads were trimmed with cutadapt tool software version
1.1819 according to the respective library preparation manual.
Reads were filtered for length between 15 and 29 bp. Arti-
ficial reads were filtered by mapping of reads with Bowtie
software version 1.2.220 to rRNA and UniVec databases
obtained from the sortmerna github repository. Reads that did
not map to UniVec and rRNA sequences were further map-
ped to relevant references with STAR software version
2.7.3a21 using “end-to-end” mode, and 5% of the sequence
was allowed to mismatch. Reads were counted with featur-
eCounts from the Rsubread R software package version 2.0.1
(http://subread.sourceforge.net), and only unique mapping
reads were counted. UMI-tools software version 1.0.1 was
used for deduplication before counting of mapped reads in
QIAseq samples.22 For comparability with other protocols,
non-deduplicated QIAseq data were used for calculation of
relevant metrics. Deduplicated QIAseq samples are referred
to as QIAseq_UMI. Plasma samples were first mapped to the
human genome (GRCh38.95). Reads mapping to genome
were further mapped to mature human miRNA sequences in
miRBase software version 22.23 Reads that were not mapped
to miRBase were further mapped in descended order to iso-
miRs, the tRNA database (435 mature tRNA sequences from
gtRNAdb), the piRNA database (8 million sequences from
piRBase version 2), and the ncRNA database (36 thousand
noncoding sequences from ensemble GRCh38). isomiRs
were mapped and counted using the isomiRROR tool
(GitLab; https://gitlab.lrz.de/Physio/isomiRROR) with
adjusted settings, when only longer and shorter isomiRs
without mismatch in mature sequence were counted. Other
small RNA references were mapped with STAR aligner
with the same settings as for mapping to miRBase.
MiRXplore samples were mapped to the miRXplore
reference with the same settings as plasma samples to
miRBase. Raw sequencing data and raw count matrices are
available on Gene Expression Omnibus database (https://
www.ncbi.nlm.nih.gov/geo/; accession number
GSE149513). All scripts used for data processing and
processed data in xlxs file format are available
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on the github repository (https://github.com/besarka16/
Benchmarking-of-small-RNA-seq, last accessed August 13,
2021).
Evaluation Metrics

If not stated otherwise, all statistics were calculated sepa-
rately for each technical replicate and their mean values are
shown. All samples were normalized by the CPM method
(divided by the total number of reads and multiplied by 1
million). For correlation measures, Pearson coefficients and
log2-transformed values were used, if not stated otherwise.
Technical bias was calculated for each miRNA as a fold
change of the mean value of two technical replicates from its
predicted value. The predicted value was calculated as a
number of normalized counts per sample divided by the
number of miRNAs in miRXplore (962 or 467 for the
EdgeSeq protocol, respectively). The contribution of PCR
bias and ligation bias to overall bias in the small RNA-Seq
was assessed on samples processed by the QIAseq protocol
with usage of the variancePartition software version 1.21.4
R package (https://bioconductor.org/packages/release/bioc/
html/variancePartition.html), which employed linear mixed
model to separate the variance of multiple variables (PCR
bias, ligation bias, and technical replicates).
Thermodynamic features of miRNAs were calculated by
ViennaRNA package version 2.0.24 Contribution of
miRNA sequence features to overall bias was assessed using
linear model in R with log2-fold deviation as a dependent
variable. RNA-Seq plasma samples were computationally
corrected using division of the normalized counts by a ratio
of the measured and expected expression values in the
miRXplore sample for the corresponding miRNA.25

Dependence of the number of detected miRNAs on
sequencing depth was assessed by down sampling the raw
counts with a random generator for binomial distribution in
R software. The number of miRNAs was used as a number
of observations, and the number of raw counts belonging to
individual miRNAs corresponded to the number of trials.
The probability of success in each trial corresponded to the
proportion of raw reads at a specific sequencing depth
related to the number of raw reads at the original sequencing
depth. False positivity was assessed in the miRXplore
samples, which were remapped to human miRNAs (miR-
Base version 22). miRNAs with �1 count (in both repli-
cates) and absent from the miRXplore reference were
considered false hits. Sequence similarity was calculated
between all pairs of false hits and the miRXplore reference
using the pairwiseAlignment function from Biostrings R
package version 2.56.0 (https://bioconductor.org/packages/
release/bioc/html/Biostrings.html). Alignment scores were
normalized by dividing the alignment score by miRNA
length, and the miRNA with the maximal score was
considered as the best match.
jmdjournal.org - The Journal of Molecular Diagnostics
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Figure 1 Experimental design, accuracy and technical biases. A: Schematic representation of study design. B: Correlation heatmaps showing between-
protocol reproducibility for miRXplore and plasma samples. C: Accuracy determined on miRXplore sample. Density plots show distribution of log2-fold
change between measured and expected value. Dashed lines show twofold deviation from expected value; numbers indicate percentage of microRNAs
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Results

Seven commercially available protocols were used to pre-
pare small RNA-Seq libraries in technical duplicates from
human plasma and an equimolar mixture of 962 synthetic
miRNAs (henceforth called miRXplore) (Figure 1A).
Plasma samples were controlled for isolation artifacts and
hemolysis (Materials and Methods) (Supplemental Table
S2); small-RNA library fraction corresponding to miRNAs
was gel-purified (Supplemental Figure S1) and samples
were sequenced in a single sequencing run to avoid batch
effects (except for EdgeSeq). This design allowed for un-
biased comparison of protocol performance with biofluids,
as well as detailed evaluation of technical biases. All
methods showed high within-protocol reproducibility
(Supplemental Figure S2), in contrast to low between-
protocol reproducibility (Figure 1B), demonstrating that
substantial, unique technical bias is introduced by each
protocol. The extent of this bias was evaluated by log2-fold
deviation of the measured value from the expected value for
each miRNA in the miRXplore sample, where ground truth
is known (Figure 1C). EdgeSeq and SMARTer had the least
bias, whereas Norgen and Lexogen were most biased, with
measured miRNA levels spanning several orders of
magnitude. Surprisingly, single-molecule ligation and
circularization approach (RealSeq), recently claiming to
significantly reduce bias,7 showed only 21% unbiased
miRNAs. In addition, the sequence bias was not reproduc-
ible between protocols (Figure 1B), showing that miRNA
profiles obtained with different protocols are not
comparable.

Although previous studies attributed a large proportion of
the bias to adaptor ligation,4 the contribution of PCR to
overall bias is often debated, with reports of negligible4,26 or
substantial effect.8,9 In the miRXplore sample, the contri-
bution of various factors to overall bias was evaluated using
QIAseq data, which employ UMIs and thus allow separation
of the PCR contribution from other effects. Ligation bias
was highly explanatory for variability in most miRNAs,
whereas PCR bias was overall negligible (Figure 1D). This
is in agreement with the previous result showing ligation-
free protocols (EdgeSeq and SMARTer) are the least
biased, whereas the ligation-based protocols are the most
biased overall (Figure 1C). Of note, a short UMI length
resulting in insufficient complexity of available UMIs was
found to lead to erroneous overestimation of PCR bias, a
likely cause for the misidentification of its contribution in
the previous study9 (Supplemental Figure S3). To provide
insights into mechanisms leading to biased measurements,
contributions of miRNA properties to overall variance of
measured miRXplore values were evaluated (Figure 1E).
First nucleotide in miRNA sequence was highly influential
for RealSeq and SMARTer, explaining as much as 44% and
25% of the variability. In addition, the identity of the last
nucleotides and free energy of adaptor-miRNA construct,
390
but not the miRNA itself, had an impact with the ligation-
based protocols using two defined adaptors including Lex-
ogen, Norgen, and QIAseq. Overall, these results demon-
strate that ligation, but not PCR, is a major source of
quantification bias in small RNA-Seq data and is influenced
by complex and technology-specific factors.
The data revealed that each miRNA is burdened by bias

that is specific for each protocol. However, these results
were based on a balanced mixture of concentrated syn-
thetic miRNAs that may not be fully representative of
biological samples such as biofluids, where miRNA con-
centrations vary broadly and sequence complexity is lower.
To identify how measurements in real biofluid samples are
influenced by bias, the absolute abundance of 19 miRNAs
was quantified by RT-qPCR in plasma (Supplemental
Figure S4) and was correlated to measured RNA-Seq
values (Figure 1F). All protocols showed positive corre-
lations with R2 values between 0.53 (Norgen) and 0.88
(SMARTer), although precision for individual miRNAs
was often low. In agreement with miRXplore data, Lex-
ogen and Norgen performed worst in this metric. The
analysis demonstrates that globally, across-miRNA corre-
lations are relatively preserved in RNA-Seq output from
biofluids, that is, highly abundant miRNAs give high-count
values and vice versa. However, values for individual
miRNAs are biased and cannot be readily transformed to
absolute abundance, making between-miRNA comparisons
difficult. It was therefore explored whether protocol-
specific biases learnt from the synthetic sample (miRX-
plore) could be leveraged to correct bias in RNA-Seq data
from plasma post hoc, as was shown by Baroin-
Tourancheau et al.25 Indeed, computational correction
increased both correlation of RNA-Seq values with known
absolute concentrations (Figure 1F), as well as inter-
protocol correlation (Figure 1G). These results suggest that
protocol-specific biases are preserved (at least to a degree)
even between vastly different samples such as plasma and
miRXplore. Once learned on the sample with a known
ground truth, they can be leveraged to both, improving
precision of the RNA-Seq values and agreement between
protocols, potentially facilitating comparisons across
studies.
An important decision that researchers face when

designing small RNA-Seq experiments is the targeted
sequencing depth, which affects the detection rates and cost
efficiency of the experiment. The required sequencing depth
is influenced by the ability of protocol to capture molecules
of interest and by the proportion of artifact reads. To assess
capture efficiency, mapping statistics for each protocol were
evaluated (Figure 2A). Note that adaptor-dimers were
removed during library preparation in this study and there-
fore were not mapped (Supplemental Figure S1). Whereas
the mapping statistics were comparable between protocols
with miRXplore, the results revealed substantial differences
with plasma samples. The most striking was the low
jmdjournal.org - The Journal of Molecular Diagnostics
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Small RNA-Seq Benchmark Study
mapping rate to miRNAs for SMARTer, which was mostly
due to inappropriate read length (Supplemental Figure S5).
By contrast, targeted approach EdgeSeq showed highest
mapping rate of 95%. Importantly, with all protocols the
The Journal of Molecular Diagnostics - jmdjournal.org
majority of miRNA-mapping reads was consumed by the
few highest-ranking miRNAs (Figure 2, B and C). Because
this may reflect true miRNA abundance, but also may be a
consequence of bias, values of the 10 most abundant
391
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miRNAs in plasma were plotted together with their corre-
sponding level of bias measured in miRXplore (Figure 2B).
In each protocol, except SMARTer and NEXTflex, there
was always a single miRNA consuming more than 50% of
all mapped reads. The rank and identity of the top 10
miRNAs differed between protocols. Although some miR-
NAs, such as erythrocyte-specific miR-451 and miR-16,
ranked among the highest with all protocols (in agreement
with their true abundance) (Supplemental Figure S4), other
miRNAs, such as miR-10b with Norgen and Lexogen,
appeared to be strongly overestimated (up to 64�) due to
bias. To assess allocation of sequencing reads on the full
miRNA spectrum, curves of cumulative frequencies were
examined (Figure 2C). The fast increase in the cumulative
frequency indicates that even low-ranking miRNAs
contribute significantly to the total counts. In miRXplore,
the number of miRNAs at cumulative frequency of 50%
(CF50) would ideally be around 481 (half of 962 miRNAs
consume half of the reads; lower values are better). In
agreement with the percentage of unbiased miRNAs,
EdgeSeq and SMARTer showed best performance, whereas
Norgen and Lexogen were worst in this metric. In plasma,
the shape of the ideal curve cannot be known; however, it is
vastly apparent that the majority of the reads are consumed
by a few miRNAs. Together, these results show that the
highly skewed miRNA distribution in plasma is caused by
natural miRNA abundance, as well as artificial, protocol-
specific biases, and both factors need to be considered to
select optimal sequencing strategy.

Considering the strong quantification bias of some miR-
NAs, binary evaluation of miRNA profiles (present/absent)
may represent an alternative, more robust approach to
identify candidate biomarkers. To characterize variables
influencing such analysis, miRNA detection rates at various
sequencing depths and count thresholds for each protocol
were examined (Figure 2D). Although most of the untar-
geted protocols approached saturation at 5 million reads,
SMARTer and RealSeq further benefited from increased
depth. EdgeSeq, QIAseq, and NEXTflex detected highest
number of miRNAs, whereas Lexogen and Norgen detected
the fewest. Relative differences between protocols were
most pronounced with higher detection thresholds and were
retained at various sequencing depths. Interestingly, Edge-
Seq detected up to hundreds more miRNAs than any other
protocol (Figure 2D). This can be attributed to EdgeSeq’s
high mapping rate (Figure 2A), but it can be also a conse-
quence of lower specificity of hybridization probes.27 To
investigate this, measured values for present human miR-
NAs (ie, true positives) versus absent human miRNAs (ie,
false positives) in miRXplore sample were plotted
(Figure 2E). Indeed, EdgeSeq showed a higher false-
positive rate and higher false signal intensities compared
with other protocols, suggesting that its higher detection rate
in plasma may be partly due to false positivity. Further,
enrichment of false-positive miRNAs from miRXplore was
assessed between miRNAs that were uniquely detected by
392
each protocol in plasma (ie, miRNAs not detected by any
other protocol). This was indeed the case for EdgeSeq, but
not for other protocols at all examined detection thresholds.
Sequence similarity analysis revealed that false-positive
miRNAs detected by EdgeSeq were only modestly similar
to true positive miRNAs (Supplemental Figure S6), sug-
gesting that false-positive detections may result from
incomplete digestion of unbound capture probes, in addition
to cross-hybridization. Because miRNA analysis on the
level of miRNA variants, isomiRs, is getting more attention
in miRNA biomarker studies,28e30 the levels of false iso-
miR detection were evaluated using the miRXplore sample.
SMARTer generated the most false isomiRs: over 4% of all
raw reads, compared with <0.4% for other sequencing-
based protocols (Figure 2A). Detailed analysis revealed
protocol-specific bias between 30 and 50 isomiRs, as well as
base preferences (Supplemental Figure S7). Whereas some
were expected (dominance of 30 isomiRs with added ade-
nines in SMARTer), the prevalence of 30 isomiRs in
EdgeSeq or preference for 30 thymine addition in RealSeq
were unexpected. This raises questions on the reliability of
isomiRs quantification and warrants careful validation of
such data. To summarize, we observed large differences in
miRNA detection rate between protocols as well as varying
contribution of false positives. Although EdgeSeq captured
the highest number of miRNAs, it suffered from highest
false-positive rate, particularly for miRNAs with low values.
Overall, the results suggest caution about spurious de-
tections and highlight the need for data validation by inde-
pendent technology.
Discussion

In this study, we compared the performance of all currently
available technical approaches for RNA-Seqebased
miRNA analysis in biofluids using a complex set of pa-
rameters, including, not only data-driven characteristics, but
also practical features such as protocol complexity or level
of multiplexing (Supplemental Table S3). There was no
protocol that would stand out as the best across all metrics
(Figure 2F). In agreement with other studies,9,10,31 we show
that data generated by ligation-free protocols were the least
biased, suggesting they may be preferable when quantifi-
cation of true miRNA abundance is of interest. Particularly,
EdgeSeq outperformed others in accuracy, but also in the
high mapping and detection rate. Other advantages of this
platform are automatization minimizing hands-on time and
the possibility to analyze crude biofluid samples. Although
here we analyzed isolated RNA for consistency reasons,
Godoy et al31 found no major differences between crude and
isolated samples. EdgeSeq disadvantages are represented by
the higher costs of analysis, the possibility to quantify only
predefined sets of miRNAs, and the lower specificity, which
is in agreement with the results of Godoy et al.31 SMARTer
was the second most accurate and the least laborious method
jmdjournal.org - The Journal of Molecular Diagnostics
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from the wet-lab perspective. However, its performance was
negatively affected by the lowest mapping rate to miRNAs
and highest production of artifact reads and false isomiRs, in
accordance with previous studies.9,10 On the other hand,
SMARTer may be well-suited for simultaneous analysis of
various classes of small RNAs in a single experiment.
Surprisingly, the most recent bias-mitigating approach
RealSeq showed accuracy levels similar to NEXTflex and
QIAseq, in contrast to results of Barberán-Soler et al,7

which reported superior accuracy of over 70%. Here, we
found that the circularization approach is not exempt from
bias. Considering that RealSeq employs two adaptor ligation
steps (one inter- and one intramolecular); our result seems to
be in line with observations that ligation is the most
prominent source of bias.5,32 Random adaptors used in
NEXTflex represented the third approach in our comparison
developed for reduction of ligation bias. In agreement with
recent studies,11,12 NEXTflex showed good-to-average
performance in most of the tested parameters and may be
therefore recommended for routine applications in various
experimental settings. Lastly, three representatives of
traditional ligation-based methods were tested (Lexogen,
Norgen, and QIAseq). As expected, Lexogen and Norgen
did not perform well in the majority of tested parameters,
which is in agreement with the recent literature.11,16 Strong
ligation bias leads to misbalanced miRNA profiles, low
coverage of the majority of the miRNAs, and lower detec-
tion rates, and therefore to the need for higher sequencing
depth. Surprisingly, QIAseq that also employs ligation of
two defined adaptors ranked together with NEXTflex among
the best in most metrics. Data show that this is not due to the
usage of UMIs, and because details of the protocol are
proprietary, it can be speculated if proper optimization or
other bias-mitigating measures are responsible for improved
results of QIAseq over Lexogen and Norgen.

Beside the protocol comparison, the data identified
several opportunities for improvement of small RNA-Seq
analysis in biofluids. First, we documented highly mis-
balanced miRNA profiles in plasma, where a few highly
abundant miRNAs consumed most reads (partly due to
biological, but also due to technical, reasons). A new gen-
eration of library preparation protocols would therefore
benefit from blocking or depleting highly abundant miRNAs
such as miR-451 and miR-16. A similar approach was
demonstrated on tRNA-halves and improved miRNA
detection in serum.33 It might be assumed that targeted
depletion of selected miRNAs might change the evaluation
metrics presented in this study and lead to different con-
clusions. Secondly, it was demonstrated that bias can be
learned on synthetic samples with known ground truth and
subsequently transferred to improve precision and between-
protocol correlation of values in a real biofluid sample.
Development of advanced computational correction models
allowing for complex cross-study comparisons would
therefore dramatically increase the utility of publicly avail-
able datasets and lead to increase of current knowledge on
The Journal of Molecular Diagnostics - jmdjournal.org
miRNA profiles in different pathological states. Lastly,
contrary to recent reports,8,9 our results suggest that UMIs
are superfluous for miRNA quantification and can even lead
to serious quantification errors if designed improperly (eg,
with insufficient length). However, the presented data are
based on a balanced synthetic template, and sample- and
protocol-specific factors may pronounce UMIs importance,
which needs to be addressed in future studies. For now, we
advocate for the developments primarily focused on over-
coming ligation bias and improving sensitivity.

Conclusions

The presented study provides comprehensive comparison of
all current approaches for high-throughput RNA-Seqebased
analysis of small RNAs. The data confirmed a large bias in
the data generated by traditional two-step ligation methods
and highlighted superiority of the methods using capture
probes (EdgeSeq) or randomized adaptors (NEXTflex). The
data documented some drawbacks that still exist and offered
opportunities for further development and improvement of
existing workflows. Overall, this study serves as a point of
reference for an informed selection of a small RNA-Seq
method and provides a framework for future development of
library preparation protocols and computational methods.
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