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Abstract

Background: The large sensitivity, high reproducibility and essentially unlimited dynamic range of
real-time PCR to measure gene expression in complex samples provides the opportunity for
powerful multivariate and multiway studies of biological phenomena. In multiway studies samples
are characterized by their expression profiles to monitor changes over time, effect of treatment,
drug dosage etc. Here we perform a multiway study of the temporal response of four yeast
Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic
conditions.

Results: We measured the expression of |8 genes as function of time after addition of glucose to
four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is
a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and
clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond
similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular
interest is our finding that ADH4 and ADHé6 show a behavior typical of glucose-induced genes, while
ADH3 and ADHS5 are repressed after glucose addition.

Conclusion: Multiway real-time PCR gene expression profiling is a powerful technique which can
be utilized to characterize functions of new genes by, for example, comparing their temporal
response after perturbation in different genetic variants of the studied subject. The technique also
identifies genes that show perturbed expression in specific strains.
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Background

The extraordinary sensitivity and virtually unlimited
dynamic range of real-time PCR makes it the preferred
technology for quantitative gene expression profiling.
Using microarray technology expression of entire
genomes can be measured, identifying candidates for
expression profiling. After validation of these genes on
representative samples by real-time PCR, eliminating any
false leads and possibly complementing with other genes,
powerful panels of expression markers can be identified.
The recent development of high throughput real-time
PCR platforms [1,2] will spur the development further. To
extract maximum information from profiling experiments
using such panels, methods to pre-process and process the
gene expression data are needed.

The addition of glucose to Saccharomyces cerevisiae cells
grown in ethanol causes an extensive reprogramming of
gene expression and metabolism, making it a suitable
model system to understand gene regulation. In this sys-
tem glucose consumption rate correlates with glucose
repression [3,4]. We have previously reported on a series
of strains, in which glucose uptake is mediated by differ-
ent native and chimeric hexose transporters, which dis-
play a wide range of glucose uptake rates [3,5,6]. These
strains are useful for investigating the effects of different
glycolytic rates on glucose-induced signaling pathways.
Many glucose induced and glucose repressed genes have
been extensively studied, but several genes believed to be
associated with metabolism remain poorly characterized.
The alcohol dehydrogenases (ADH) are such group. Its
first two members, ADH1 and ADH2, have well known
characteristics [7-10], while the functions of ADH3-6 are
poorly understood [11-16].

We have previously shown that glucose uptake is the rate
limiting step for glycolytic flux in strains expressing a
series of individual glucose transporters with reduced
transport capacity [5]. Ethanol production, also under aer-
obic conditions, in Saccharomyces cerevisiae is believed to
be a result of overflow metabolism where rate limitation
of the TCA cycle results in a flux towards ethanol produc-
tion [17]. In this study we were interested in exploring
transcriptional responses of some of the less characterized
ADH-genes to better understand their regulations under
conditions of different glycolytic rates.

Here, four yeast strains representing the full range of glyc-
olytic rates; namely, wild-type (high glycolytic rate), HXT-
HXT7 (medium glycolytic rate), HXT-TM6* (low glyco-
lytic rate), and HXT-null (no glucose uptake) were selected
to study the responses of metabolic genes. In previous
works we have shown that ethanol production rate corre-
lates to glycolytic rate [3], which pointed us in the direc-
tion of the ADH-genes and in particular the less studied
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ADH3, ADH4, ADH5 and ADHG6. Here we address
whether a decrease in the rate of ethanol production rate
can be attributed in part to the roles of the ADH-genes.
The study is a 3-way design, with the three ways being (i)
genotype, (ii) gene, and (iii) time. We use a variant of
geNorm [18] and Normfinder [19] to find suitable refer-
ence genes for normalization along all three ways, and we
present suitable pre-processing of the data for analysis.
Finally, the data are analyzed by augmented principal
component analysis (PCA), which is a variant of PCA for
3-way studies [20]. The classification obtained by the aug-
mented PCA is verified by hierarchical clustering and clus-
tering by the self-organizing map (SOM) [21]. The
analyses classify the genes into five groups with character-
istic temporal profiles, based on which functional similar-
ities between the ADH3-6 genes and previously more
characterized genes can be found.

Results and Discussion

Experimental setup and gene selection

In this study four yeast strains KOY.PK2-1C83 (wild-type),
KOY.HXT7P (HXT-HXT7), KOY.TM6*P (HXT-TM6*) and
KOY.VW100P (HXT-null) were used. In the HXT-HXT7,
HXT-TM6* and HXT-null strains, the genes HXT1-HXT7,
GAL2, STL1 and three maltose permeases (see Methods)
have been deleted. This results in a strain unable to take
up glucose as measured by uptake of radiolabeled C'3-glu-
cose [22]. Into this HXT-null strain we introduced either
HXT7 (HXT-HXT7) or TM6* (HXT-TMG*). The four
strains used have high, intermediate, low and zero glucose
consumption rates, i.e. glycolytic rates [3,5,6]. They were
grown on ethanol and exposed to glucose to follow the
transcriptional responses of a series of selected genes.
Samples were collected before and during one hour after
the pulse to study the short term response of the genes.

Genes known to be induced or repressed in wild-type
strain, with normal glycolytic flux, were included in the
study to allow for the classification of the ADH-genes (Fig-
ure 1). The established glucose induced genes were Triose-
phosphate isomerase 1 (TPI1, catalyzing reaction step 5),
Phosphoglycerate kinase 1 (PGK1, catalyzing reaction step
7), Pyruvate decarboxylase (PDCI, catalyzing reaction
step 11) and Alcohol dehydrogenase 1 (ADH1, catalyzing
reaction step 12), which are all members of the lower gly-
colysis [8,23]. The established glucose repressed genes
involved in gluconeogenesis and the glyoxylate cycle
genes were Fructose-1,6-bisphosphatase (FBP1, catalyzing
the reverse reaction of step 4), Alcohol dehydrogenase 2
(ADH2, catalyzing the reverse reaction of step 12) and
Malate dehydrogenase 2 (MDH2, catalyzing oxalacetate in
the glyoxylate cycle) [23]. In addition, Sucrose fermenta-
tion (SUC2) was included, which is a well studied target
gene of glucose repression/derepression [24-27], the Mul-
ticopy Inhibitor of GAL (MIG1), which is a central repres-
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sor of SUC2 [28], the mitochondria localized Cytocrome
C (CYC1), which is regulated by MIG1 and repressed by
glucose [29,30] and heat shock protein 12 (HSP12),
which is known to be repressed by very low glucose con-
centrations and is also stress induced [31-33]. Inorganic
pyrophosphatase (IPP1), Actin (ACT1), and Pyruvate
dehydrogenase 1 (PDA1) were included as tentative
house-keeping/reference genes. In addition to the well
characterized genes, for which raw data have been partly
reported before [3], we also included a series of ADH-
genes (ADH3-6) that are less well understood, to investi-
gate their responses in relation to different glycolytic rates.
Throughout this paper the genes in figures and tables are
color coded as follows: ADH1, PGK1, TPI1, PDCI and

MIG1 genes, which are expected to be induced by glucose,
are shown in blue, FBP1, ADH2, MDH?2 and SUC2, which
are expected to be repressed by glucose, are shown in red,
ADH3, ADH4, ADH5 and ADH6 genes, whose functions
are rather unknown, are shown in yellow, HSP12 is shown
in black and CYC1 in green.

Validation of reference genes

For proper comparison samples should be normalized.
Parameters such as mass, volume, cell number and total
RNA have been used but none of these can compensate
for variations in RNA quality and the presence of reaction
inhibitors. Today, normalization is usually performed
with internal reference genes, which always should be val-
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idated to have constant expression under the conditions
of the study [34]. Identifying appropriate reference genes
for data normalization and validating them on represent-
ative samples is a challenging problem in expression pro-
filing, because the expression of all genes seem to be
regulated under some conditions. Different algorithms
have been developed to identify the most suitable refer-
ence genes. geNorm [18] and NormFinder [19] are among
the most popular. The two methods are based on some-
what different assumptions. While geNorm identifies the
pair of genes with most correlated expression relative to
all the other genes by an elimination approach,
Normfinder identifies the gene(-s) that shows least varia-
tion. Normfinder also distinguishes between intra- and
inter-group variation, where the latter is the systematic
difference in expression between the subgroups (here the
four strains). The data, in the form of cycle of threshold
(CT)-values, were arranged in one matrix per strain, with
the genes as columns and the sampled time points as
rows. The two PCR replicates measured for each gene were
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averaged. The four 8 x 18 matrices were then laminated
into a 32 x 18 matrix (Figure 2) and an extra classification
column was added to index the strains. The results of
geNorm and Normfinder are shown in Figure 3. geNorm,
which treats all data as a homogenous group, identified
PDA1 and IPP1 as the most stable pair of genes and ACT1
as the 3rd best reference gene candidate. Normfinder
selected the genes in the stability order PDAI > IPP1 >
ACT1, with all exhibiting insignificant intra and inter-
group variability. Hence, we conclude that ACT1, IPP1
and PDA1 are suitable reference genes for our study of
yeast metabolism. This conclusion was supported by prin-
cipal component analysis, which showed that ACT1, IPP1
and PDA1 cluster in scatter plots evidencing that they have
similar behavior (data not shown).

Data pre-processing

Data pre-processing was performed starting with the four
matrices containing the measured CT-values. All CT-val-
ues reflected formation of targeted product as verified by
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Figure 2
Diagram showing lamination and catenation of data matrices.
Page 4 of 15

(page number not for citation purposes)



BMC Genomics 2008, 9:170

A

1,84
164
1,44 —
1,2 B
1,04
0,81
0,6

I

M-value
]

Figure 3

http://www.biomedcentral.com/1471-2164/9/170

o
)

]
]

Variability
5

0,54 H
0,0 H H [1
q

Identification of potential reference genes. Potential reference genes are identified by (A) geNorm and (B) NormFinder.
Low M-value or variability represents the most constantly expressed reference genes.

melting curve analysis, and corrections for primer-dimer
signals were not needed. For strain HXT-TM6* both tech-
nical repeats had failed for PDA1 at 30 min, and the miss-
ing data was reproduced by interpolation. The CT-values
were corrected for PCR efficiency (E) assuming E = 0.95
for all assays in all strains:

log(1+E)
log(2)

95% PCR efficiency was typical for the assays used in the
Saccharomyces cerevisiae matrix. However, it should also be
stressed that correction for PCR efficiency has negligible
effect on classification of multivariate expression data
[19]. The PCR technical repeats were then averaged. Next
the CT-values for the genes of interest (GOI) were normal-
ized with the average of the CT-values of the reference
genes (RG) PDA1, IPP1 and ACT1:

CTp_y000 = CTg

n
1
CTcornorm = CTeor — " E CTgre
i=1

This reduced the dimension of the data matrices to 8 x 15.
Next, the CT-values were converted to relative quantities

(RQ)

RQ = 2CTo=CT

where CT, is the CT-value measured immediately before
glucose addition (0 minutes). RQ was then converted to
fold changes (FC) with log, base:

FC = 1og,(RQ)

The temporal expression profiles, expressed as FC, are
shown for the wild-type strain in Figure 4A. To give all
genes equal weights for classification of expression pro-
files the data were autoscaled (FC,g) by subtracting the
mean expression of every gene in each strain (i.e, the col-
umn mean) and dividing with the (column) standard
deviation:

FCys =(FC—FC)/SD

The average expression of each gene in each strain is now
zero and its standard deviation is one. The autoscaled
expression profiles for the yeast wild-type strain are
shown in Figure 4B (RQ and FC, for the other strains are
shown in Additional data 1).

Classification of the genes' expression profiles with
principal component analysis

The measured data consisted of eight time points (sam-
plings) measured for fifteen genes of interest in each of the
four strains. Hence, the total number of data points was:
8 (samplings) x 15 (genes) x 4 (strains) = 480. Clearly, to
visualize such large amounts of data and to unravel pat-
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Classification of genes using PCA. The FC (A) and FC,4(B) over time are shown for wild-type yeast. Using PCA the first
three scores vectors (C) are shown together with PCI-PC2 (D) and PCI-PC2-PC3 (E) plots for wild-type yeast. Corresponding
PCI-PC2 plots are shown for the HXT-HXT7 (F), HXT-TMé* (G), and HXT-null (H) strains. The following colors and symbols
are used: Glucose-induced genes (blue), glucose-repressed genes (red), ADH3-6 (yellow), HSPI2 (black), CYCI (green), wild-type
(circles), HXT-HXT7 (squares), HXT-TMé* (triangles) and HXT-null (stars).

terns efficient methods are called for. The classical scatter
plot is an intuitive way to visualize how genes are
expressed in different samples. These are typically 2-
dimensional plots where the two axes indicate the genes'
expressions in the two samples. It is possible to indicate
genes' expressions for three genes in a 3-dimensional scat-
ter plot. But this is the limit, since we have no convenient
way to plot data in more than three dimensions. To deal
with higher order data multivariate biostatistical tools are
required to reduce the number of dimensions without
loss of essential information. A classical, widely used tool
is Principal Components Analysis (PCA). PCA allows sci-
entists to study many variables simultaneously. It reflects
how the original variables are correlated, and also how the
samples are grouped. Principal Components (PCs) are
mathematical constructs that can be interpreted as linear
combinations of the studied variables with the following
important properties:

(i) The PCs are orthogonal. Once a PC is linked to the
behavior of one or several genes, one can be reasonably
sure that this correlation is unique and these genes do not
correlate substantially with other PCs. The numerical
coefficients, ranging from -1 to +1, given to each gene in
each PC are called loadings and reflect how important the
gene is to define this PC.

(ii) The PCs are sequential. This means that the first, and
by definition the most significant, PC can be interpreted
as the line in the original multidimensional space of all
the samples that best fits the expression data and, hence,
explains most of the observed variability and accounts for
most of the information. The second most significant PC
can be visualized as a vector perpendicular to the first PC
that fits the expression data best, and accounts for most of
the variability that is not accounted for by the first PC.
Additional PCs are defined analogously. One can extract
PCs until a certain percentage of all the information, let's
say 80%, is accounted for, and then discard the remaining
PCs, which will mainly reflect uncorrelated information
and, hence, the experimental noise. In most cases it is not
practical to calculate more than three PC's, since, as
already mentioned, we are limited to make 3-dimensional
plots. Once the PCs have been calculated, the samples can
be located in this new space using the scores, which spec-
ify the location of each sample on each PC. The original
data can now be presented in a scores scatter plot to reveal
groups among the samples or a loadings scatter plot to
reveal groups among the genes. Many times PC1-PC2 scat-
ter plots are sufficient, but one can also construct PC1-
PC2-PC3 scatter plots.

Figure 4C shows the two most significant scores vectors

for the autoscaled wild-type (high glycolytic rate) yeast
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data. As the temporal expression profiles, the scores are
functions of time, and they reflect the main features of all
the measured profiles. The most significant PC score vec-
tor (PC1) reflects a rapid decrease in expression that levels
off after some 20 minutes. The PC2 score vector is signify-
ing extreme expression at an intermediate time of about
10-15 minutes. The expression profile of every gene can
be approximated as a linear combination of the two scores
vectors, and can be visualized in a scatter plot based on
the weights (loadings) of the linear combination (Figure
4D). For wild-type yeast we see that the induced (blue)
and repressed (red) genes are clearly distinguished by
PC1: induced genes have negative PC1 loadings while
repressed genes have positive. Among the repressed genes,
we find that SUC2 is located off the cluster's center, indi-
cating that the SUC2 profile may be somewhat different
from that of the bulk of the repressed genes. In Figures 4A
and 4B, we indeed see that one of the red temporal expres-
sion profiles shows a different behavior from the rest. This
is SUC2. While the expression of the bulk of the repressed
genes reaches minimum at about 20 minutes and then
saturates, SUC2 expression goes through a minimum and
thereafter it slowly increases. Indeed, the PC2 loadings
sort genes based on their tendency to show extreme
expression at an intermediate time of about 10-15 min-
utes (the PC2 scores vector in Figure 4C). Genes showing
local maximum expression at an intermediate time are
characterized by a positive PC2 loading, while genes
exhibiting local minimum have negative PC2 loading.
Genes that do not show extreme expression at intermedi-
ate time points have PC2 loadings around zero. The most
negative PC2 loading is found for CYC1 (figure 4D),
which shows maximal repression after about 15 minutes
after glucose addition (Figure 4B). Positive PC2 loadings
are found for HSP12, ADH4 and ADHG6, which all have a
local maximum in their temporal expression profile. The
specific roles for Adh4 and Adh6 are not fully understood.
ADH4 has previously been reported not to be expressed in
laboratory strains or to affect ethanol production [35].
ADHG6 has a high specificity towards long chain aliphatic
and bulky substrates and has been suggested to participate
in the production of fusel alcohols [12]. Fusel alcohols are
produced mostly during fermentation, which could
explain its induction after glucose addition. The induced
genes, with negative PC1 loadings, and most of the
repressed genes, with positive PC1 loadings (SUC2 being
an exception), have PC2 loadings close to zero, indicating
that their temporal expression profiles are unimodal.
ADH3 and ADHS5 are located close to each other in the
loadings scatter plot, within the cluster of the repressed
genes. They have somewhat lower PC2 loadings than the
bulk of the repressed genes, but higher than SUC2 (Figure
4D). This suggests that ADH3 and ADH5 respond simi-
larly to glucose addition in wild-type yeast, and their
expression profiles are characteristic of repressed genes.
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Repression of ADH3 after glucose addition is consistent
with previous studies, which report lower Adh3 activity
during respiratory growth when compared to fermenta-
tive growth [14]. Adh5 has been reported to be involved
in ethanol formation but its function is only apparent in
an adhladh3 strain [13]. More detailed studies are needed
to understand differences in responses between ADH4/6
and ADH3/5.

From the eigenvalues of the PCA it was calculated that
95.6 % of the variance in all the measured data is
accounted for by the first two PC's, reinforcing the useful-
ness of the PC1 vs. PC2 loadings scatter plot. The third PC
of the wild-type strain accounts for an additional 3% of the
variability in the data. The third score vector has the shape
of the derivative of the second vector (Figure 4C), and
sorts the genes based on when they reach intermediate
extreme expression. Genes that reach extreme expression
after 10-15 minutes obtain positive PC3 loading, while
genes reaching extreme expression within 10 minutes
obtain negative PC3 loading. The genes in wild-type yeast
are clustered based on all three PC's in the PC1 vs. PC2 vs.
PC3 loadings scatter plot in Figure 4E. In the 3D loadings
scatter plot, MIG1 separates from the other induced genes,
because its expression reaches maximum at an earlier
time. The 3-dimensional plot accounts for 98.6 % of all
the variability, which is essentially all biologically relevant
information; remaining variability is mainly experimental
noise. This can be verified by comparing the wild-type tem-
poral expression profiles with those reproduced from the
three main PC's. The agreement is excellent evidencing
that the three PC's have indeed picked up all the impor-
tant features of the genes' expression profiles in wild-type
yeast (data not shown). These features are:

1) Expression either increases or decreases

2) Expression reaches an extreme negative or positive level
at an intermediate time point from which it recovers

3) Extreme expression is reached before or after 10 min-
utes.

PCs calculated for HXT-HXT7 (medium glycolytic rate)
had similar features as those for the wild-type strain. In the
PC1 vs. PC2 loadings scatter plot (92.6% of the initial var-
iance, Figure 4F), the PC1 still differentiates between
induced (left) and down-regulated (right) genes. The
repressed genes cluster more tightly in the HXT-HXT7
strain compared to wild-type, and the cluster also contains
ADH3 and HSP12, which in wild-type had a distinct loca-
tion. This is because their expression in wild-type initially
increases, goes through a maximum (Figure 4A-B) and
then decreases. In HXT-HXT?7 they are instead repressed
from start. ADH5, which was found close to the cluster of
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repressed genes in wild-type, is now distant from it having
large negative PC2 loading. This suggests that its expres-
sion is affected in HXT-HXT?7 such that it goes through a
minimum. CYC1, which too has negative PC2 score, also
goes through a minimum in its temporal expression pro-
file in the HXT-HXT7 strain. In addition, the induced
genes separate into two subclusters: ADH1, TPI1 and
PDC1 in one and PGK1, MIG1, ADH4 and ADHG in the
other (Figure 4F). The separation is mainly along PC2,
indicating that the subgroups differ in whether expression
goes through (in this case) a maximum or if it levels off.

For HXT-TM6* (low glycolytic rate)the contribution from
noise to the data was larger due to the overall less efficient
glucose response and the two main PC's account for only
85 % of the total variance. PC1 loadings still reflect
whether genes are up or down-regulated, while the PC2
loadings are less well defined (Figure 4G). The repressed
genes still form a cluster, with SUC2 having a somewhat
higher PC2 score. HSP12 is located within the cluster of
repressed genes, while ADH3 and ADH5, which were
within this cluster in wild-type strain, are separated due to
negative PC2 loadings and they are now closer to CYCI.
The induced genes, but PGK1, form a tight cluster contain-
ing also ADH4. ADHG is found at similar PC1 score as the
induced genes, suggesting it too has similar expression,
although its positive PC2 score indicates its expression
profile is somewhat shifted in time. PGK1 is located
around zero loadings for both PC1 and PC2. This means
that the first two PCs are not very useful to describe its
temporal profile and we can only conclude it is different
from that of the other induced genes. Inspecting the raw
data (see Additional data 1) we find that PGK1 expression
in HXT-TMG* is essentially unaffected by glucose addition
and remains at a constant level.

For the HXT-null (no glucose uptake) strain the changes in
expression upon glucose addition were small, and the PC
loadings are quite different from those of the other strains.
Therefore, the genes' locations in the HXT-null scatter plot
cannot be compared to the previous ones. Anyway not
much remains of the groups seen for the other strains,
reflecting the relatively weak response in HXT-null when
glucose is added. The most spectacular observation is that
MIG1, which is a typical glucose-induced gene, is here
clearly differentiated from the other glucose induced
genes (Figure 4H and Additional data 1C). Inspection of
the temporal profiles indicates that MIG1 is the only gene
in this group that is still induced upon glucose addition;
the expression of the other genes decreases when glucose
is added. HSP12, which is repressed after the glucose pulse
has previously been reported to be down-regulated at very
low glucose concentrations [33], but our results rather
suggest that the signal is extracellular. Our observation
that MIG1 is still derepressed in HXT-null confirms that it
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is regulated through extracellular sensing, which previ-
ously has been suggested by Kaniak et al. [36].

In traditional PCA (as performed above) the PC's are cal-
culated for each strain separately, yielding strain specific
score and loading vectors. As consequence, the loadings
plots obtained for the different strains cannot be com-
pared easily because the axes have different orientations
in the original multidimensional measurement space.
This problem is evident when comparing the HXT-null
above with any of the other strains: for all the other strains
genes induced upon glucose addition are characterized by
negative PC1 loadings, while for HXT-null induced genes
have positive PC1 loadings. The reason is that the PC1
loading vectors have (among other things) opposite ori-
entations in the two cases. To deal with this problem the
study must be treated as multiway. While multivariate
methods are designed to study one set of samples, charac-
terized by the response of many variables (= genes), mul-
tiway methods should be used to study several sets of
samples, such as the four strains here. One multiway
method is matrix-augmented PCA [37]. In matrix-aug-
mented PCA the pre-processed data matrices can be either
laminated or catenated (Figure 2). Since we here are pri-
marily interested in the genes we catenate the data into an
8 x 60 matrix, with the genes as columns and samplings
as rows. PCA is then performed on the augmented matrix,
which produces common score vectors for all strains.
These were used to construct the PC1 vs. PC2 loadings
scatter plot in Figure 5. In the plot, the genes are color
coded as before and the four strains are distinguished by
symbols. The HXT-null strain was omitted for clarity. A
plot containing also HXT-null is provided in Additional
data 2. The two main PC's account for 87% of the variabil-
ity in the catenated data set and the loading vectors have
shapes similar to those of the wild-type strain shown in Fig-
ure 4D. Five main areas with genes are seen.

I. PC1 << 0, PC2 = 0; genes induced upon glucose addi-
tion.

II. PC1 >> 0, PC2 =~ 0; genes repressed upon glucose addi-
tion.

III. PC1 = 0; PC2 >> 2; genes with expression profiles that
go through a maximum.

IV. PC1 ~ 0; PC2 << 2; genes with expression profiles that
go through a minimum.

V. PC1 = 0; PC2 = 0; genes with no regulation upon glu-
cose addition.

Most of the ADH1, PGK1, TPI1, PDC1 and MIG1 genes are
found in area I, indicating they are induced upon glucose
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ADH5

Matrix-augmented PCA for wild-type, HXT-HXT7 and HXT-TMé* yeast. Data matrices from the respective strains
were catenated to a single matrix, followed by PCA. The following colors and symbols are used: Glucose-induced genes (blue),
glucose-repressed genes (red), ADH3-6 (yellow), HSPI2 (black), CYCI (green), wild-type (circles), HXT-HXT7 (squares) and

HXT-TMé* (triangles).

addition. Exceptions are PGK1 and MIGI1 in the HXT-
HXT?7 strain, which go through a maximum, and PGK1 in
HXT-TM6*, which shows no response. Most FBP1, ADH2,
MDH?2 and SUC2 genes are in area II. Exceptions are SUC2
in wild-type, where it shows a local minimum in the tem-
poral profile, and in HXT-TM6*, where it shows a tran-
sient induction similar to that observed in growing cells
close to glucose depletion [24]. The less well understood
ADH3-6 genes show the following behavior: ADH4 and
ADHG are found in areas I and III co-localized with genes
induced by glucose, while ADH3 and ADH5 are found in
areas II and IV co-localized with genes repressed by glu-
cose. Hence, we conclude this is their general response to
glucose. Several of the ADH3-6 genes in some strains have
PC2 scores significantly different from zero indicating that
their temporal profiles may go through local minima/
maxima. To verify these conclusions the entire experiment
was repeated and analyzed separately by matrix-aug-
mented PCA (Additional data 3). Only small differences
in scores were seen and the genes were grouped the same
way as in Figure 5

Confirmation with hierarchical clustering and Kohonen
self-organizing maps

While PCA is a very robust approach to classify samples
based on multivariate and multiway measurements and
an excellent tool to unravel variable patterns, there are
also other techniques for unsupervised clustering. The
most common is hierarchical clustering although,
recently, the Kohonen self-organizing map (SOM) is gain-
ing attention. While PCA always yields the same unbiased
result for a certain set of data, hierarchical clustering
requires the user to select a distance or similarity measure
and also to define how distances between groups shall be
measured. Once these decisions are made, hierarchical
clustering also gives the same result every time for certain
data. SOM, on the other hand, is based on a particular
type of artificial neural networks that can be used to create
an organized map of expression profiles by treating the
raw information in the experimental data using a chain of
successive comparisons. The goal is to create a map where
adjacent areas correspond to similar samples, alterna-
tively to genes with similar expressions. A SOM consists of
an array of unconnected artificial neurons. There are sev-
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eral options to organize them but in most cases they are
arranged in a convenient square so that each neuron is
adjacent to other neurons (termed neighbors). The under-
lying idea is to assign sets of neurons (regions in the map)
to a distinct class of samples. This is achieved through an
iterative process. Briefly, each neuron in the map is
defined as a set of weights (a vector of values) that equals
the number of variables, in this case temporal profiles,
measured for each gene [38]. Hence, the weight vectors
can be interpreted as artificial expression profiles. Creat-
ing the SOM consists of adjusting the weights of the neu-
ron during a training phase. First the map is initiated by
assigning small random numbers to the weights. Then a
gene is selected randomly and its measured temporal
expression profile is compared to the weights of the
SOM's neurons. The neuron with the most similar weights
is identified and information about the gene's expression
profile is added to its weights. Furthermore, the informa-
tion is also added to the neighboring neurons. The process
is then repeated with a new gene over and over until a sta-
ble SOM is obtained. This SOM will have neurons with
weights that reflect all genes' expression profiles and
weights of neighboring neurons will be similar. In a final
step each gene is placed in the neuron of the SOM that has
the most similar weight to its temporal profile. As a con-
sequence genes with similar profiles will be found in the
same neuron or in close-lying neurons.

The possible advantages of hierarchical clustering and
SOM when compared to PCA are that the former methods
are intuitive and use all the information in the data, while
PCA is based on coordinate transformation and reduction
of dimensionality, which are less obvious operations and
also always loses some of the variability in the measured
data. The loss of limited amount of information is usually
not serious, at least if the first 2-3 PCs have large eigenval-
ues and, hence, account for a large percentage of the total
variation. In fact, reduction of dimensionality may lead to
improved signal to noise ratio in the measured data, since
biological variability is systematic and is mainly con-
tained in the initial PCs, while experimental noise is ran-
dom and dominates the PCs that are discarded [39]. A
disadvantage of hierarchical and Kohonen-SOM cluster-
ing is that they only yield groups, and any further bio-
chemical interpretation has to be extracted studying the
original data matrices, while in PCA there is a relation
between the measured data and the scores and loadings.

Figure 6 shows the graphical output (dendrogram) of the
hierarchical clustering of the catenated wild-type, HXT-
HXT7 and HXT-TM6* autoscaled data, using the Eucli-
dean distance to measure similarity and the unweighted
pairs clustering algorithm [40]. The dendrogram reveals
four main groups: from top, the first group is composed
of MDH2, FBP1, HSP12 and ADH2 from all three strains,
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SUC2 from HXT-HXT7, ADH3 from wild-type and HXT-
HXT7, and ADH5 from wild-type. Group 2 contains CYC1
from all strains together with SUC2 from wild-type and
ADH5 from HXT-TM6* and HXT-HXT7 and ADH3 from
HXT-TM6*. Group 3 contains all ADH6 and ADH4 from
wild-type and HXT-HXT7, and PGK1 and MIG1 from HXT-
HXT?7. Last group contains all TPI1, ADH1, and PDCI1,
together with MIGI1 from wild-type and HXT-TM6*, PGK1
from the wild-type and ADH4 from HXT-TM6*. PGK1 in
HXT-TM6* belongs to no group evidencing it has a
unique response. The four groups as well as the unique
location of PGK1 in HXT-TM6* agree well with the four
regions in the PC1 vs. PC2 loadings scatter plot of the PCA
shown above (Figure 5) reinforcing the previous conclu-
sions.

There are two strategies to design SOM. A fairly large
SOM, typically of dimension n x n, with n being the
number of genes, can be used. In such SOM genes are
sparse and only rarely is more than one gene found in one
neuron. There are no clear boundaries between groups,
because the SOM surface changes irregularly and distances
between the genes are not proportional to the differences
between them. Still, genes with similar expressions will be
close to each other in the SOM, but there will be no space
between groups of genes as in the case of PCA. This makes
it hard to assign new groups and large SOMs are therefore
more suitable to validate previous classifications based on
PCA and hierarchical clustering. The alternative is to use a
small SOM, with a rather small number of neurons. This
forces the genes to cluster in the few neurons available,
thereby creating groups. Testing different parameters for
the generation of SOMs and classification of the auto-
scaled catenated wild-type, HXT-HXT7 and HXT-TM6*
data, we found that a 3 x 2 SOM gave highly reproducible
groupings, independent of the learning rate and the
number of neighbors. Figure 7 shows the groups formed
in such SOM based on a learning rate of 0.10, 2 neighbors
and 10000 iterations. The groups agree very well with the
PCA classification. In cell (2, 1) we find CYC1, ADH5
from HXT-TM6* and HXT-HXT7, ADH3 from HXT-TMG*
and wild-type SUC2. These are the genes found in the bot-
tom left of the PC1 vs. PC2 loadings scatter plot (Figure
5). Cell (2, 2) contains only PGK1 in HXT-TM6*, which
was concluded above to have aberrant expression profile
both by PCA and hierarchical clustering. In cell (1, 3) we
find the glucose induced genes and ADH4 in HXT-TM6*
that in the loadings scatter plot are found at negative PC1
and a PC2 around zero. Cell (1, 1) contains most of the
glucose-repressed genes, HSP12 in HXT-TM6* and HXT-
HXT7, ADH3 in HXT7 and wild-type, and ADH5 in wild-
type, which in the PCA loadings scatter plot are found at
positive PC1, and slightly positive PC2. Cell (1, 2) con-
tains HSP12 from wild-type, SUC2 from HXT-TM6* and
ADH4 from HXT-HXT?7. In the PCA loadings scatter plot,
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Figure 6

Hierarchical clustering of the genes in the wild-type, HXT-HXT7 and HXT-TMé%* strains. Un-weighted pairs were
used to calculate similarities between clusters based on Euclidian distances. Five different groups are identified and marked in

the plot.

HXT-TM6* SUC2 and wild-type HSP12 are also close to
each other at positive PC2 and a PC1 around zero. ADH4
in HXT-HXT7 is also in this region, although it is closer to
another group of genes that in the SOM is found in unit
(2, 3). These are ADHG in all three strains, ADH4 in wild-
type, and MIG1 and PGK1 in HXT-HXT7. The same genes
are found in the top left corner of the PC1 vs. PC2 load-
ings scatter plot.

Classifications by PCA, hierarchical clustering, and SOM
are based on quite different assumptions and mathemati-
cal models, which makes the methods complementary.
Hierarchical clustering and SOM create groups based on
some measure of similarity between the samples, which is
calculated directly from the experimental data. Additional
criteria are required to construct groups (hierarchical clus-
tering) or define regions for groups (SOMs). In contrast,
PCA is based on the variables and its main objective is to
reveal patterns by calculating a set of abstract factors (the
PCs). The number of PCs is much lower than the number
of variables, which makes interpretation easier. It elimi-

nates most of the random variation but also some system-
atic, biologically relevant, information may be missed.
SOM takes account of all variation in the data, but at the
expense of not having a linear scale. This makes SOM
more suitable for validation than first hand classification.
Hierarchical clustering creates clusters sequentially by
inspecting subpopulations of the data. Once a sample is
entered into a group it cannot be extracted again (i.e. hier-
archical). Hence, even though all information in the
measurement is considered, it is not considered all at
once. Therefore, the final clusters may depend on subtle
differences between samples' expression profiles. For this
reason results of hierarchical clustering should be con-
firmed by an independent method. For the data presented
here and also for the independent replicated experiment
in Additional data 3, classifications by PCA, hierarchical
clustering and SOM are highly consistent, suggesting that
the conclusions reached based on the results are valid.
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Kohonen self-organizing maps for the augmented wild-type, HXT-HXT7 and HXT-TMé6%* yeast. A map with six cells
was used to force classification into six groups. A learning rate of 0.10, 2 neighbors and 10000 iterations were used. This gave
the following groups: (1, 1) FBPI, ADH2, MDH2 (all strains), SUC2 (HXT-HXT7) HSP12 (HXT-HXT7 and HXT-TMé%*), ADH3
(wild-type and HXT-HXT7) and ADH5 (wild-type); (1, 2) SUC2 (HXT-TMé*), HSPI2 (wild-type) and ADH4 (HXT-HXT7); (1, 3)
ADHI, PDCI, TPII (all strains), MIGI (wild-type and HXT-HXT7), PGK| (wild-type), ADH4 (HXT-TM6%*) (2, 1) CYCI (all strains),
SUC2 (wild-type), ADH5 (HXT-HXT7 and HXT-TMé*), ADH3 (HXT-TMé*); (2, 2) PGKI (HXT-TMé*); (2, 3) MIGI (HXT-HXT7),
PGK!I (HXT-HXT7), ADH4 (wild-type), ADHé (all strains). The following colors and symbols are used: Glucose-induced genes
(blue), glucose-repressed genes (red), ADH3-6 (yellow), HSPI2 (black), CYCI (green), wild-type (circles), HXT-HXT7 (squares)

and HXT-TMé* (triangles).

Conclusion

The yeast multiway expression profiles, based on the
expression of 15 genes of interest measured at eight time
points in fours strains, analyzed catenated by the three
analytical methods Principal component analysis, hierar-
chical clustering and self-organized maps yield highly
consistent results. The genes can be divided into four
groups (Figure 8) characterized by different combinations
of the two main loading vectors of the PCA, they form
four hierarchical clusters, and they separate in a SOM with
small number of neurons. PGK1 in HXT-TM6* strain falls
outside these groups in all analyses, indicating it has a dis-
tinct expression profile. A further noteworthy observation

is that the responses of MIG1, PGK1 and SUC2, in agree-
ment with our previous study [3], depend on the glyco-
lytic rate. The previously rather unknown ADH3-6 genes
and also HSP12, respond to glucose stimuli. HSP12 is
strongly repressed also in a strain depleted of all glucose
transporters, which suggests that Hsp12 senses extracellu-
lar glucose. ADH4 and ADHG6 are transiently stimulated by
glucose, although neither has been reported to participate
in ethanol production [12,35]. ADH3 and ADH5 are
repressed in a seemingly glycolytic rate dependent manor
(Figure 8). The detailed temporal expression profiles are
quite different in the different strains but our results sug-
gest that there is a fine-tuning regulatory mechanism for
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Summary of gene classification. Genes are arranged into
five groups after PCA: group | (genes induced upon glucose
addition), group Il (genes repressed upon glucose addition),
group Il (genes with expression profiles that passes through
a maximum), group |V (genes with expression profiles that
passes through a minimum) and group V (no regulation).

PCA classification was confirmed by hierarchical clustering
and Kohonen SOM.

the ADH3-6 genes that involves glucose. Finally, as the
regulation of the ADH1, ADH2 and PDCI1 genes remain
the same in all strains capable of glucose metabolism our
study confirms that the differences in ethanol production
between the strains is not regulated at the ethanol produc-
tion branch.

Methods

Strains and growth conditions

Strains used in this study were KOY.2-1C83 (MATa MAL2-
8¢ SUC2), KOY.VW100P (MATa MAL2-8¢ SUC2 hxt17A4
ura3-52 gal2A::loxP stl1A::loxP agtl A::loxP ydl247wA::loxP
yjr160cA::loxP  hxt12A::loxP  hxt15A4::loxP  hxt16A::loxP
hxt14A::loxP hxt12A:loxP  hxt9A::loxP  hxt11A::loxP
hxt10A::loxP  hxt8A::loxP  hxt514:loxP  hxt2 A::loxP
hxt367A::loxP carrying an integration cassette at the
former HXT367 site containing the truncated, constitutive
promoter of HXT7 [41] (the KIURA3 open reading frame
for counter selection, and the HXT7 terminator),
KOY.HXT7P (same as KOY.VW100P but klIURA3, in the
integration cassette, was replaced by HXT7 and ura3-
52::URA3) and KOY.TM6*P (same as KOY.VW100P but
kIURAS3 in the integration cassette was replaced by TM6*
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and wura3-52::URA3) (3-4). Detailed strain information
has been reported previously [3,5,6]. Cells were grown in
1% ethanol and 5x concentration of minimal media [42]
until an optical density (OD) of 1-1.5 at 610 nm. Glucose
was pulsed to a final concentration of 5% (w/v) and sam-
ples for RNA extraction were taken at 0 min just before the
glucose pulse and then at 1, 5, 10, 20, 30 and 60 min after
the pulse.

RNA extraction, cDNA synthesis and quantitative real-
time PCR

RNA was extracted using phenol/chloroform extraction.
RNA was dissolved in water and 100 pg was DNase treated
on RNeasy columns (QIAGEN) as described by the man-
ufacturer. 1 pg of the DNA free RNA was used in the
reverse transcriptase reaction (Superscript II, Invitrogen)
using pd(T)12-18 (Amersham Bioscience) as primers.
Quantitative real-time assays were performed in an iCy-
cler (BIORAD). PCR products were validated by agarose
gel electrophoresis and melting curve analysis. Other set-
tings are specified separately in the results. All real-time
PCR experiments were run as duplicates. All data analyses,
including normalization and data pre-treatment were per-
formed with GenEx (version 4.1.7, MultiD Analyses).
Data Supplement 1 and 3 require GenEx for visual inspec-
tion of the data.
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