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a b s t r a c t

Individual cells represent the basic unit in tissues and organisms and are in many aspects unique in their
properties. The introduction of new and sensitive techniques to study single-cells opens up new avenues
to understand fundamental biological processes. Well established statistical tools and recommendations
exist for gene expression data based on traditional cell population measurements. However, these work-
flows are not suitable, and some steps are even inappropriate, to apply on single-cell data. Here, we pres-
ent a simple and practical workflow for preprocessing of single-cell data generated by reverse
transcription quantitative real-time PCR. The approach is demonstrated on a data set based on profiling
of 41 genes in 303 single-cells. For some pre-processing steps we present options and also recommenda-
tions. In particular, we demonstrate and discuss different strategies for handling missing data and scaling
data for downstream multivariate analysis. The aim of this workflow is provide guide to the rapidly grow-
ing community studying single-cells by means of reverse transcription quantitative real-time PCR
profiling.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

In translational molecular research tissue heterogeneity is ma-
jor complication. Tissues consist of several cell types that respond
differently to stimuli. When studying the effects of environmental
changes or responses to drugs only some of the cells respond and
they may respond differently. Non-responsive cells only confound
the measured signal and obscure analysis. The introduction of sin-
gle-cell analysis has opened up for new possibilities to study tissue
heterogeneity by detecting differences even among seemingly
identical cells. Several strategies for single-cell analysis have been
described and used to study various experimental systems [1–3].
Today, single-cell gene expression profiling using reverse tran-
scription quantitative real-time PCR (RT-qPCR) is the most com-
monly used method to study individual cells. Single-cell RT-qPCR
has been applied to many cell types including neurons [4], astro-
cytes [5,6], embryonic stem cells [7–9] and beta-cells [10].

Cell collection can be handled in high throughput using fluores-
cence activated cell sorting (FACS). Specific cells from body fluids

and in vitro cultures can be enriched on the basis of surface mark-
ers using FACS. Individual cells can also be generated from most
tissues by careful dissociation and then collected by FACS, but
the context from which the cell is taken is lost during preparation
[5,6]. Other means to extract individual cells are microaspiration
[4,10] and laser capture microdissection [11,12]. Single-cells are
then lysed and if possible no further purification or washing is per-
formed. Purification-free lysis minimizes RNA losses [13,14]. Lysis
is followed by reverse transcription, pre-amplification and finally
qPCR [9,15–17]. If fewer than ten genes are analyzed and they
are reasonably high expressed pre-amplification may not be
needed [4–7]. Single-cell RT-qPCR measurements should be per-
formed to the highest possible extent according to the Minimum
Information for Publication of Quantitative Real-Time PCR Experi-
ments (MIQE) guidelines [18].

When designing experiments the studied effect should be max-
imized relative to the confounding variation. Confounding varia-
tion has two main contributions: (1) Intersubject variation,
caused by the natural biological heterogeneity among the studied
subjects that give rise to different gene expression levels; (2) Tech-
nical variation, introduced by imprecision in the processing of the
samples, comprising the steps of sampling, transport, storage,
extraction, reverse transcription, pre-amplification, and qPCR. The
confounding variation is reduced by using appropriate controls
and references and by performing biological and technical repli-
cates. The measured cycle of quantification (Cq) values are then
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pre-processed, taking advantage of the controls and references
used, to remove confounding variation ending up with as accurate
Cq-values as possible for statistical analysis to extract biologically
relevant information. Fig. 1 left shows the general qPCR data pre-
processing workflow to reduce confounding variation and prepare
data for statistical analysis for traditional samples based on large
number of cells. The workflow lists the steps that may be relevant
in appropriate order. In practice all pre-processing steps are not
needed, since some steps cancel the effect of other steps. Some
pre-processing steps considered routine when analyzing tradi-
tional samples are not only unsuitable but also inappropriate at
single-cell level, since they would increase confounding variation.
Other steps, hardly significant in cell population analysis are criti-
cal when analyzing individual cells. Here, we describe the steps
relevant when pre-processing single-cell RT-qPCR expression data
and present a convenient and robust workflow (Fig. 1, right).

2. Description of method

2.1. Data set

A previously unpublished single-cell data set is used to illus-
trate the single-cell data analysis workflow. Expression of 41 genes
was measured in 303 single astrocytes collected by FACS from
mouse brains before (day 0) and after (day 3, 7 and 14) induced
ischemia, using the GFAP/EGFP mouse model described elsewhere
[6]. The cells were lysed, reverse transcribed, pre-amplified and
analyzed with qPCR using the BioMark qPCR platform (Fluidigm)
as described [5,13]. The detailed experimental protocol will be
published elsewhere. The applied data set is representative for sin-
gle-cells analyzed by RT-qPCR with respect to distribution of tran-
scripts among cells, number of positive cells, and gene expression
levels [5–10]. The pre-processing steps and the workflow is illus-
trated using GenEx (ver. 5.3, MultiD), but in principle any statisti-
cal software can be used.

2.2. Data arrangement

In most experiments groups are compared. Most common is to
arrange data with Cq-values (the explained variables) in columns
headed with experimental group labels (the explanatory vari-
ables). This layout provides easy overview of data, and basic statis-
tics such as means and standard deviations (SD) are easily
calculated (Fig. 2A). However, this arrangement of data is not prac-
tical for more advanced studies involving more than one factor,
multiple markers, replicate measurement, multiplate measure-
ments, etc. A more flexible layout is to arrange samples in rows
and all variables in columns (Fig. 2B). Today, this is standard
arrangement of data in most statistical software. The format is
readily generalized to any number of markers and additional col-

umns and rows can be added that specify the experimental design.
In GenEx, the explanatory variables are referred to as classification
columns and classification rows and have labels starting with #. In
the example shown in Fig. 2C, #Repeat indexes qPCR technical rep-
licates (samples with the same index are technical replicates on
the qPCR level). These are expected to be highly similar and shall
be averaged during data pre-processing. #Group indexes treatment
groups that eventually shall be compared using a statistical test. Fi-
nally, the study is paired, meaning that each subject received both
treatments and a sample was collected after each treatment. Paired
study designs are more powerful, because the pairing eliminates
much of the systematic subject variation between the compared
groups.

2.3. Elimination of false positives

Amplification curves with atypical shapes are usually not pro-
cessed correctly. Aberrant amplification curves also indicate sam-
ple specific problem, such as enzymatic inhibition, and should be
removed from further analysis or reanalyzed. The quality of ampli-
fication curves is usually performed by visual inspection. For high
throughput qPCR analysis, manual inspection is tedious and some
automatic approaches based on kinetic analysis that indicate or re-
move suspicious data are available, but their reliability under var-
ious conditions still remains to be validated (www.labonnet.com
and www.azurepcr.com) [19].

If reporter dyes are used and melting curve analysis has been
performed it should be used to validate that amplification is spe-
cific. If aberrant PCR products are formed in addition to the ex-
pected product, data should be interpreted qualitatively only,
since the Cq-value cannot be trusted. When probes are used melt-
ing curve analysis cannot be performed and any non-specific PCR
products, which can influence the measured Cq-values by compet-
ing for reagents, will go unnoticed. In principle, a non-specific dye
can be added into the probe based reaction to monitor formation of
aberrant PCR products by melting curve analysis in a separate
detection channel [20]. Tables S1A and B shows the data set before
and after validation based on melting curve analysis.

2.4. Interplate calibration

Single-cell gene expression profiling experiments tend to be
large scale because of the underlying lognormal variation of tran-
scripts among the individual cells, which requires large number
of cells to be analyzed to reach statistical significance [5,10,21].
Typically, 50 cells need to be profiled at each condition, and with
current workflow 25–100 different transcripts are readily mea-
sured per cell. This leads to many thousands of reactions to be ana-
lyzed. Even with high throughput platforms multiple plates have to
be run. In the processing of the measured raw data the qPCR

Fig. 1. Workflow for pre-processing of RT-qPCR data at cell population and single-cell level.
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instrument software subtracts baseline and reads out Cq-values as
the crossing points of the amplification curves at threshold level or
by calculating the maximum of the second derivative. The baseline
corrections and the Cq estimations are performed independently
for each run, which may introduce systematic variation. This bias
is assay independent and can be compensated for running an int-
erplate calibrator, which is a common sample assayed on all plates.
Bias can also be introduced by variable assay performance over
time. This can be differences in primer, probe, and mastermix
batches or external factors such as the time to prepare the exper-
iment. Table S1C shows the data set after interplate calibration. In-
dexes in the column labeled #plate indicates the independent
qPCR runs and #IPC indicates the interplate calibrator. Global
interplate calibration was applied to our data set. The average
Cq-value of all genes for respective IPC (CqIPCAverage) was used to
mean-center data between different runs using the equation:

CqCalibtrated
GOI ¼ CqGOI �

1
m

Xm

j¼1

CqIPCAverage �
1
n

Xn

i¼1

CqIPCAverage

 !

where CqCalibrated
GOI and CqGOI are Cq-values after and before interplate

calibration, respectively. m is the number of interplate calibrators in
run m (qPCR replicates), and n is the total number of interplate cal-
ibrators (m = 1 and n = 8 in our data set, n = number of qPCR runs ⁄
number of qPCR replicates). Calibrators can also be used to
compensate for technical bias introduced during lysis, RT and
pre-amplification [14,15,22,23].

2.5. Assay efficiency correction

PCR efficiency is assay dependent and influenced by factors
such as amplicon length and sequence, mastermix composition,
and temperature profile. PCR efficiencies can be estimated from
standard curves [18,24] and used to correct the measured
Cq-values using the equation:

CqE¼100% ¼ CqE
logð1þ EÞ

logð2Þ

where CqE is the uncorrected Cq value and E (0 6 E 6 1) is the PCR
efficiency. The importance of the correction depends on application.
Most single-cell data are analyzed without additional normalization
and autoscaled by genes (see below). Data scaled this way are inde-
pendent of PCR efficiency and therefore not affected by the correc-
tion. In practice, there may be small effect of PCR efficiency
introduced by the handling of off-scale and missing data (see be-
low), since it influences which cells are above the off-scale thresh-
old Cq. Figure S1 shows that the effect of PCR efficiency correction
in a Principal Component Analysis (PCA) plot is negligible. Figure S2
shows how the calculated distribution of transcripts among cells is
affected by the PCR efficiency correction. Comparing mean expres-
sion levels between groups, using e.g. t-test or non-parametric tests,
the calculated p-values are not affected by the PCR efficiency cor-
rection, while the difference between the mean expressions is af-
fected. Assuming 100% PCR efficiency when the true efficiency is
lower also underestimates the relative quantities (RQ) and the var-
iability in transcript levels between individual cells. Differences in
pre-amplification efficiencies between genes affect the data in a
similar way, i.e., negligible effect on analyses performed with auto-
scaled data and on calculated p-values. No correction for any varia-
tion in PCR efficiency among genes during pre-amplification is
performed here.

2.6. Missing and off scale data

Analyzing small samples there will be missing data (reactions
that do not give rise to any Cq-value) and off-scale data (reactions
that give Cq-values too high to be trusted). How missing data ap-
pear in the data file depends on the qPCR instrument used. Some
instruments leave them blank, other indicate them with ‘‘NAN’’
(= Not A Number), while some assign an extreme value to them,

Fig. 2. Data arrangement. (A) Classical data arrangement with Cq-values (the explained variables) in columns headed with the experimental group labels (the explanatory
variables). (B) Data arrangement with explained and explanatory variables in different columns is preferred for more advanced experimental designs. (C) Example of data
arrangement with one column identifying samples, three columns with explanatory variables (# Repeat, # Group and # Paired) and three columns with explained variables
(GOI_1, GOI_2 and Ref. Gene). GOI, Gene of interest; Ref. Gene, Reference gene.
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such as 999. In particular, the latter has to be amended in the pre-
processing of qPCR data, since an extreme value will have profound
influence on any downstream parametric statistical analysis and
the conclusions reached will be dominated by the extreme values
rather than on those measurements that produce reliable data. In
any workflow extreme Cq-values assigned by the instrument soft-
ware should be removed or replaced with ‘‘NAN’’ (Fig. 3A).

Before handling missing data it helps realizing there are two
distinctly different reasons a reaction does not produce a Cq-value:
(1) the reaction chamber contained template molecules but the
PCR failed (2) the reaction did not produce any product because
there was no template in that particular reaction chamber. These
two cases should be handled differently. If technical replicates
are available (Fig. 3B), missing data due to reaction failure can be
restored based on replicate information. The simplest approach is
to restore them by the average of the successfully recorded repli-
cates (Fig. 3C). A more advanced and accurate approach is imputa-
tion. Imputation accounts also for any systematic differences
between replicates based on information from other assays
(Fig. 3D). Imputation shall only be applied to sets that have com-
mon replicates. Typically, imputation is used for technical repli-
cates; if a biological replicate is missing it is usually better to

exclude it. If several levels of technical replicates are available,
imputation can be repeated at each level. For single-cell expression
data technical replicates are usually not available, since it is more
cost efficient to analyze more cells than to collect replicate data.
Should technical (qPCR) replicates be available they are averaged
at this stage of pre-processing.

Very high Cq-values reported by the instrument software are
often not reliable even when the correct PCR product is formed,
since they correspond to very few molecules or even fractions of
a molecule and have become large due to various problems such
as failed amplification of single molecule targets in the initial
cycles, delayed amplification due to competing reactions, or
inhibition. They may also be false positives (primer-dimers and
other aberrant products). These Cq-values are not useful and
should be discarded. A pragmatic approach is to delete all
Cq-values above a certain threshold. In principle, Cq-values higher
than the Cq-value expected for a reaction starting with a single
template molecule (CqN=1) should not be trusted. CqN=1 depends
on instrument, PCR efficiency, applied detection chemistry, and
instrument settings. On classical microtiter plate based instru-
ments CqN=1 is usually around 35–37 cycles. On high throughput
platforms using smaller reaction volumes and more sensitive

Fig. 3. Missing data. (A) Data can be missing due to technical failure or to too low gene expression level. (B) Any extreme Cq-values (e.g. 999) reported by the instrument
software should be eliminated. (C and D) Missing data can be replaced using information from technical replicates, either by the average of the successful measurements or by
imputation, which also considers systematic differences between replicate samples based on information from other genes.

A. Ståhlberg et al. / Methods 59 (2013) 80–88 83



Author's personal copy

optics CqN=1 is some 10 cycles lower. CqN=1 is assay dependent and
can in principle be determined as the intercept of a qPCR standard
curve with known concentrations. However, this is not practical,
since it requires preparing purified starting material (preferably
cDNA) of known concentration for every target and should be
run in a matrix similar to that of the single-cell experiments. Prag-
matic is to delete all Cq-values above a certain threshold, CqCutoff,
which is the same for all the assays. A reasonable CqCutoff can be
chosen by inspecting control charts (Fig. 4). The first control chart
shows the variation of Cq-values across samples for the different
assays (Fig. 4A). In this chart cells that have overall very few tran-
scripts (all Cq-values are high) are identified (Table S1D) and may
be considered failed or at least anomalous. Furthermore, poor
performing assays are identified by lines that never or rarely reach
below CqCutoff. A second control chart presents the measured
Cq-values of each assay in a box and whiskers plot (Fig. 4B).
Box and whiskers plots are expected to be symmetric because of
the underlying lognormal distribution of transcripts among indi-
vidual cells. Asymmetry may indicate that the number of copies
of the particular transcript is too low to be reliably detected giving
rise to truncation at high Cq. However, distributions of transcripts
can have many features and genes should in general not be elimi-
nated due to their expression characteristics. Tentative outliers are
identified using standard statistical tests and are indicated with
symbols. A third control chart shows the fractions of missing
Cq-values, off scale Cq-values (Cq > CqCutoff) and valid Cq-values
(Cq 6 CqCutoff) for each gene (Fig. 4C). This plot identifies assays
that are not contributing with meaningful information. The control
charts can be calculated and inspected for different CqCutoff-values,
guiding the selection of an appropriate CqCutoff for further analysis.

Most single-cell expression data analyses can be performed
directly on Cq-values, but results become more intuitive and suited
for visualization if expression values are converted to relative copy
numbers. RQ can be calculated assuming Cqcutoff = CqN=1:

Relative quantities of cDNA molecules ðRQÞ ¼ 2Cqcuttoff�Cq

However, data should be expressed in log2-scale, since the
underlying distribution of transcripts among cells is lognormal. A
practical approach is to set all missing data to �1 in log2-scale, cor-
responding to 0.5 molecule in RQ. For the data in our example we
applied CqCutoff = 27 (Table S1E) and converted data to RQ using the
equation above (Table S1F). Remaining missing data were assigned
RQ = 0.5 (Cq Off scale = 27 + 1, Table 1F). The rational of assigning
CqCutoff + 1 to the missing data is that CqCutoff is global representa-
tion of CqN=1, which is the Cq expected for a single template mol-
ecule. Hence, CqCutoff + 1 represents a concentration lower than a
single molecule, in fact, half that concentration. Of course, we can-
not have 0.5 molecules in a test tube, but due to sampling ambigu-
ity we cannot conclude a test sample is negative when we obtain a
negative PCR analyzing an aliquot. We only know that the sample
contains fewer molecules than we are able to detect with the cur-
rent protocol. Even with a perfect PCR sampling ambiguity, which
can be modeled by the Poisson distribution, results in a limit of
detection (LOD) of 3 molecules at 95% confidence, i.e., the volume
fraction analyzed shall in average contain 3 molecules for a reac-
tion to give positive PCR in 95% of the cases [18]. For real samples
LOD is typically higher because of losses in sample processing, RT
and imperfect PCR. Analyzing experimental data, a more conserva-
tive approach is to set CqCutoff to a lower value (25–26 cycles on a
high throughput instrument) with a larger offset to the missing
data. For example, assigning CqCutoff + 4 to the missing data is
equivalent to assigning a concentration to those samples that is
1/16 of LOD. The effect of the offset is to weight the importance
of not detecting a transcript in a cell. We have found that a good

strategy is to use a small offset when analyzing homogeneous
cohort of cells that are expected to express the same genes, and

Fig. 4. Quality control charts. (A) Variation of Cq-values across samples for the
different assays. In this chart anomalous single-cells that generated few reliable
data (high rate of missing data and high Cq-values for all genes) are identified. Here,
two cells (D14_51 and D14_53) showed no expression what so ever and should be
eliminated from further analysis. (B) Box and whisker plot provides an overview of
the spread of the genes’ expressions. Potential outliers are indicated with circles
and extreme outliers with stars. Potential and extreme outliers have expression
levels outside 1.5⁄IQR and 3⁄IQR, respectively (IQR = Quartile 3–1). Quartile 1 and 3
represent the bottom and top of the box and are the 25th and 75th percentile of the
gene expression values. Box and whisker plots with many potential outliers indicate
genes (Kcnk1, Gluk3 and Gluk4) with skewed distributions of transcripts among the
individual cells. (C) Gene quality graph. The percentages of single-cells with Cq
below and above Cqcutoff and with missing data are shown. Genes with many Cq-
values larger than Cqcutoff (Kcnj10 and Hcn4) have either very low expression and/or
the assays are performing poorly.
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a large offset when objective is to distinguish between cell types
that exclusively express some markers. Figure S3 shows the effect
of changing Cqcutoff = 27 to Cqcutoff = 25 on PCA, and Figure S4
shows the effect of offset when assigning different Cq-values to
the missing data. For this particular data set the CqCutoff-value
and the offset have insignificant effect on the analysis result. This
is usually the case. Still, we recommend users to test the effects
of CqCutoff and offset when analyzing new data to validate the
robustness of their handling of missing data. One should also be
cautious when key classification genes are expressed at low level
with high Cq-values. It is then important to set CqCutoff at a value
that distinguishes between positive and negative cells with respect
to this marker. In some cases it may be necessary to treat key clas-
sifiers separately, using an assay specific Cqcutoff. Genes that may be
biased due to the choice of Cqcutoff are identified in the control
charts (Figs. 4B and C). The rationale of handling missing data after,
instead of before, the transformation to RQ is that RQ of the Cqcut-

off-value (and not of Cqcutoff + 1) shall be assigned arbitrary expres-
sion of 1 (zero in log2-scale). The RQs after handling missing data
and RQs in log2-scale are shown in Tables S1G and S1H, respec-
tively. Conversion of relative quantities to the number of cDNA
molecules or to the number of mRNA molecules requires calibra-
tion with standards [9,14,25]. Missing data due to few target mol-
ecules in the reaction vessel is in single-cell studies with good
assays more common than reaction failure. Missing data can there-
fore be replaced with Cqcutoff + offset instead of imputation or aver-
aging even when qPCR replicates are available. In practice the two
options to handle missing data will produce very similar results.

2.7. Basic statistics and distributions

To get an overview of the data we calculate some basic statics
for all the genes studied, including the number (or fraction) of cells
expressing each gene, and the mean and standard deviation (SD) of
all the genes’ expressions. Mean and SD are calculated on data in
logarithmic scale, since the underlying distribution is lognormal,
but can be converted to linear scale for presentation. The fraction
of cells that express a particular gene correlates well with the
gene’s mean expression (Fig. 5A and B, Spearman correla-
tion = 0.78, P < 0.01). The mean expression is calculated as the
arithmetic average of the relative quantities expressed in logarith-
mic scale (log2). This is equivalent to calculating the geometric
average of the data in linear scale, and reflects the medium number
of transcripts per cell, which is the number of transcripts expected
in the typical cell of the population. From Fig. 5C we calculated that
the median number of molecules per reaction well was 3.1
(RQmedian = 3.1 assuming Cqcutoff = CqN=1). To convert this to the
median number of mRNA molecules per cell one must consider
RT, pre-amplification, and qPCR efficiencies as well as all dilution
steps. The SD of the measured Cq-values reflects variability, which
is dominated by the heterogeneity of the cells. Usually SD scales
with the average expression of the gene (Fig. 5D-E, spearman cor-
relation = 0.98, P < 0.01). This correlation is quite linear, which is
equivalent to the relative standard deviation (SD/mean, also
known as the coefficient of variation, CV) being independent of
concentration. For our data CV was roughly 100% (mean and SD
are equal). A transcript that has deviant CV should be suspected
to have differently regulated transcription or anomalous stability.

It is good idea to visualize the distributions of the different tran-
scripts among the cells either as frequency histograms or violin
plots (Fig. 6). From experience we know that under most condi-
tions the distribution of a transcript among homogenous cells
can be fitted with a lognormal distribution [5,8–10,14]. Recent the-
oretical considerations suggest that a Poisson-Beta distribution
may be more appropriate to model single-cell expression data
[26]. However, the two distributions have similar features and

are both suitable for analysis of single-cell data with parametric
statistics. Deviant distributions, in particular highly skewed and bi-
modal (two maxima) distributions, indicate that several cell types
are present and/or that the cells respond differently to stimuli
[5,10]. In our example the distribution of Vim transcripts among
the cells changes over time. In the reference material (day 0) most
cells had low/no Vim expression. Upon injury Vim was upregulated
and reached maximum expression at day 7. At day 14 Vim was
downregulated again, but did not return all the way to the basal
expression level of the healthy brain.

2.8. Mean-centering and auto-scaling

Expression data can be analyzed one gene at a time using tradi-
tional univariate statistics, such as the t-test, Anova and regression.
These tests assume data are normal distributed, which is typically
satisfied for single-cell gene expression when expressed in loga-
rithmic scale. Univariate statistical methods can be applied directly
on the measured data or on calculated logarithmic expression
quantities. They usually work well on single-cell data, but suffer
from ambiguity if many genes are analyzed, since the false positive
rate increases and many genes will appear differentially expressed
due to chance only. An alternative, or rather a complementary ap-
proach, is to analyze the data using multivariate statistical meth-
ods. These methods take the collective response of all the genes
into account. Popular multivariate statistical methods suitable for
qPCR expression profiling include PCA, Hierarchical clustering,
and the Self organizing map [27]. When using multivariate meth-
ods we must consider the expression levels of all the genes, since
if no scaling is applied the more expressed genes will have higher
weights in the analysis and will dominate the result. This is usually
not desired. Rather, it is preferred to give all the genes same
weights in the analysis, making them equally important in the data
processing. This is accomplished by autoscaling the data, which is
done by calculating z-score for each gene by subtracting its mean
expression and divide by its SD [27,28]. Thus, a z-score of 2 indi-
cates that a gene in a particular sample is overexpressed by two
SDs relative to its mean expression in all the samples. Autoscaling
is preferred when mining single-cell qPCR expression profiling
data. There are few cases, though, when autoscaling is not suitable.
When the panel includes genes that are not responsive to the stud-
ied conditions and their expression among the samples show only
random variation, autoscaling will only increase the noise these
genes contribute to the data set. If the number of non-responsive
genes is large the data quality may be compromised by autoscal-
ing. An option is then to only mean-center the data. Mean-
centering is performed by subtracting the average expression of
each gene, but not dividing with the SD. Mean-centered data have
zero average expression for all the genes, but their levels still vary.
In practice one often starts analyzing mean-centered data, identi-
fying the responsive genes, and then inactivating those non-
responsive for further analysis, which is performed on autoscaled
data. Variable selection tools such as dynamic PCA are very useful
for identification of the most responsive and relevant genes. Some-
times it is also of interest to analyze only a subset for samples. If
data are mean-centered or autoscaled and samples are removed
from the data set, the original scaling is not valid and has to be re-
peated. Software such as GenEx handles this automatically, but it
has to be remembered if analyzing data manually or using spread-
sheet program such as Microsoft Excel. If too many data are miss-
ing one should also use mean-centering and autoscaling with care,
since the offset chosen may have pronounced effect on the scaling.
This can be tested by reanalyzing data using a different offset as
described above. One should also test the influence of genes with
low expression levels and many missing data on the multivariate
analysis result by reversibly inactivating them. Still, an option, if

A. Ståhlberg et al. / Methods 59 (2013) 80–88 85
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Fig. 5. Features of gene expression profiling at single-cell level. (A) Correlation between the number of cells containing a gene transcript and the mean expression of the same
gene. (B) Number of genes versus percentages of positive expressing cells. (C) Diagram showing the frequency of expression levels among the genes. (D) Correlation between
SD and mean expression (data in logarithmic scale). (E) Variation of expression levels among the cells presented as frequency distribution of the standard deviations of the
genes’ Cq-values. Genes’ expressions at different time points after injury were treated as independent variables (Ntot = 164).

Fig. 6. Distribution of Vim transcripts among single-cells at different time points after injury. Frequency of cells with different expression levels of Vim before (day 0) and
after injury (day 3, 7, and 14). The gray bars indicate the number of cells with no detectable expression of Vim.
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there are many cell specific genes and the objective is to distin-
guish cell types, is to analyze the data in binary mode; i.e., consid-
ering only whether a gene is expressed or not in a cell.
Mathematically this is equivalent to using a very large (infinite)
offset when handling missing data. The offset used when handling
missing data is actually setting the weight to the importance of a
transcript not being present in a cell. Fig. 7 shows PCA with
mean-centered (Fig. 7A) and autoscaled (Fig. 7B) data. Figure S5
shows the PCA loadings calculated with the two scaling options
and the impacts of the genes. Only minor differences caused by
the scaling are observed in the PCA scores and loadings for our data
(Figs. 7 and S5).

Traditional autoscaling and mean-centering is applied to vari-
ables, which in qPCR are the genes, with the objective of giving
them the same weight in the analyses [27,28]. For single-cell
expression profiling one may also apply autoscaling or mean-cen-
tering to the samples. For each cell the average expression of all the
genes is subtracted and optionally the data are divided by the
standard deviation of the genes’ expressions in that cell. Mean-
centering the data per cell is particularly interesting, since it is
equivalent to global normalization or at least truncated global nor-
malization, since we only measure the expression of a fraction of
all the genes. Such normalization will account for cell specific
variations in extraction, RT yield, and pre-amplification/PCR effi-
ciencies. Autoscaling data per cell standardizes the expression data
to a common scale; for example, a cell type may be characterized
by having certain genes expressed at least 2 SDs above the mean

expression of all the other genes studied in that cell. Such scaling
removes, for example, the influence of total expression level per
cell and it allows comparison of single-cell with few cells data.

2.9. Preprocessing steps not suitable for single-cell analysis

As indicated by the workflow in Fig. 1 some steps of classical
qPCR data pre-processing are not used on data from single cells.
Traditional RT-qPCR data are almost always normalized to compen-
sate for differences in the amount of sample material analyzed.
Most common is to normalize with endogenous reference genes
[18]. Their expression is not only expected to be proportional to
the amount of material, but it also reflects any loss in the handling
and processing of the samples. However, transcription in individual
cells occurs in bursts and under normal conditions no gene has con-
stant steady state level of transcripts [29]. Since the transcriptional
bursts of most genes are uncorrelated one cannot use common ref-
erence genes for normalization. In principle global normalization
based on the average expression of all the transcripts can be per-
formed (or mean center data per sample, see above), but the robust-
ness of this approach is still to be proven. Complications include the
rather small number of genes typically analyzed per cell and the
ambivalence in the handling of missing data. Another option may
be to normalize to a highly abundant or degenerative transcript,
such as the Alu repeat in human. This approach, however, is compli-
cated by the genomic DNA background present.

The accuracy of a RT-qPCR measurement is proportional to the
number of molecules analyzed and if the number becomes very
small accuracy is compromised due to sampling (Poisson) ambigu-
ity. Instead of dividing a sample in duplicates that are analyzed
separately and the results averaged, it is better to measure the sin-
gle whole sample with twice the transcript amount [14]. Generally
all samples should be processed keeping all dilution steps, includ-
ing lysis, RT, pre-amplification and qPCR, to a minimum. As a rule
of thumb the sample volume analyzed in a reaction vessel by qPCR
should contain a minimum of 10–25 target molecules, which will
contribute with sampling noise (SD) of 0.5–0.3 cycles. Notably, in-
stead of aliquoting a cDNA sample with few molecules for separate
singleplex qPCRs, it is better to first pre-amplify the cDNA. Even
though preamplification introduces some variation it is less than
the sampling error introduced when aliquoting a highly diluted

Fig. 7. Principal component analysis of single-cells based on their expression
profiles. PCA based on mean-centered (A) and autoscaled (B) data. Loadings for
principal component analysis are shown in Figure S5. Data points represent
individual astrocytes collected from mouse brains before (day 0, red) and after (day
3, green, day 7, blue, and day 14, black) ischemia.

Fig. 8. Variation due to sampling ambiguity. Standard deviation of Cq-values of
replicate samples caused by sampling ambiguity calculated by the Poisson
distribution. The SD increases rapidly when the number of molecules decreases.
The reason maximum SD is obtained at about 3 molecules is that only positive
samples are considered.
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sample (Fig. 8) and [15,22,23]. After pre-amplification the amount
of transcripts is usually high enough to allow technical qPCR repli-
cates to be measured, as a reassurance if a qPCR fails. From a cost-
performance and statistical perspective, though, it is usually better
to analyze larger number of single-cells than performing technical
replicates. Of course, in the validation of assays, including controls,
standard curves and LOD, technical replicates should be measured
[18].

2.10. Classification algorithms

Analysis of data and data mining is usually hypothesis driven
and therefore application dependent and the different methods
available have been discussed elsewhere [5,27,28]. Here we only
use PCA to visualize some of the important features of the pre-
processing using an example data set collected on astrocytes
harvested at different time points after brain injury in mice. PCA
clearly reveals changes in gene expression profiles at the single-
cell level occurring over time, reflecting heterogeneity and cell
transformation induced by the injury. Other powerful methods to
analyze and classify individual cells include hierarchical clustering,
and the self organizing map [5,27,28].

3. Concluding remarks

Gene expression profiling using RT-qPCR took a major leap for-
ward by the publication of the MIQE guidelines, which help users
analyzing classical samples [18]. For single-cell profiling some as-
pects (e.g., reference gene normalization) of the standard workflow
are not valid or applicable, while other options (e.g., mean-
centering and autoscaling along samples) are almost compulsory.
Here we present a complete workflow for the pre-processing of
single-cell RT-qPCR data that is robust and prepares the data in a
meaningful way for further analysis and mining. Using an example
data set we also present several characteristics of single-cell
expression data. For some pre-processing steps we present options
and also recommendations based on the experience gathered so
far. The aim of this workflow is to provide guidelines to the rapidly
growing community studying single-cells by means of RT-qPCR
profiling. To further stimulate exchange and experiences in the
single-cell expression field we have made our example data
available in supplement.
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